DATE: July 13, 2011

TO: MAG Specification and Details Committee Members

FROM: Jeff Benedict, Asphalt Working Group/AGC

RE: Section 321 - Asphalt Concrete Pavement

PURPOSE: Address compaction

REVISIONS:

a) Updated allowable self-directed target changes
b) Specify asphalt temperature for pavement fabric
c) Installed requirements if asphalt binder and or air voids do not meet target value
d) Changed sample frequency
SECTION 321

ASPHALT CONCRETE PAVEMENT

321.1 DESCRIPTION:
This section is to provide specifications for furnishing all materials, mixing at a plant, hauling and placing a mixture of aggregate materials, mineral admixture and asphalt binder to form a pavement course for placement upon a previously prepared base or sub base.

321.2 MATERIALS AND MANUFACTURE:
The materials shall conform to Section 710 for the type specified. The specific required mix type shall be called out in the contract documents or as directed by the Engineer.

321.3 WEATHER AND MOISTURE CONDITIONS:
Asphalt concrete shall be placed only when the surface is dry, and when the atmospheric temperature in the shade is 40 degrees F. (50 degrees F for Asphalt Concrete lift less than 2 inch thick) or above. No asphalt concrete shall be placed when the weather is foggy or rainy, or when the base or sub base on which the material is to be placed is unstable. Asphalt concrete shall be placed only when the Engineer determines that weather conditions are suitable.

321.4 APPLICATION OF TACK COAT:
A tack coat shall be applied to all existing and to each new course of asphalt concrete prior to the placing of a succeeding lift of asphalt concrete. The tack coat may be deleted when a succeeding layer of asphalt concrete is being applied over a freshly laid course that has been subjected to very little traffic when approved by the Engineer.

The application of the tack coat shall comply with Section 329. The grade of emulsified asphalt shall be SS-1 h or CSS-1 h as specified in Section 713.

The same material that is specified above for the tack coat shall be applied to the vertical surfaces of existing pavements, curbs, and gutters, against which asphalt concrete is to be placed.

The surface to be covered may require repair or patching as directed by the Engineer. This shall be addressed in the project specifications prior to the bidding of the project.

321.5 MIX DESIGN
The mix design shall be submitted to the Engineer at least five working days prior to the start of asphalt concrete production. Mix designs provided by the agency may be utilized on projects at the Engineer’s discretion. The Engineer will review and approve the mix design to assure it contains all of the required information as outlined in Section 710.3.1. The target values for gradations, binder contents, and air voids will be established as the accepted Job Mix Formula (JMF) based upon the mix design. Mix designs not containing all of the information will be returned within five working days of receipt of all mix design information, for action and resubmission by the contractor.

Once the mix design has been approved by the agency and the mixing plant selected, the Contractor and/or his supplier shall not change plants nor utilize additional mixing plants without prior approval of the Engineer.

If the contractor elects to change its source of material, the contractor shall furnish the Engineer with a new mix design, which meets the requirements of Section 710, as amended by the Project Specifications.
The contractor may make self-directed target changes to the approved mix design within the limits shown below. Requests for self-directed target changes shall be made in writing and acknowledged by the Engineer prior to the start of production of a lot and will remain in effect until such time as any additional changes are implemented.

The self-directed target changes must meet the contract requirements for mix design criteria and gradation limits.

<table>
<thead>
<tr>
<th>TABLE 321-1</th>
<th>ALLOWABLE SELF-DIRECTED TARGET CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASURED CHARACTERISTICS</td>
<td>ALLOWABLE SELF-DIRECTED TARGET CHANGES</td>
</tr>
<tr>
<td>Gradation (Sieve Size)</td>
<td></td>
</tr>
<tr>
<td>3/8 inch</td>
<td>± 42% from mix design target value</td>
</tr>
<tr>
<td>No 8</td>
<td>± 24% from mix design target value</td>
</tr>
<tr>
<td>No 4</td>
<td>≤ 24% from mix design target value</td>
</tr>
<tr>
<td>No 200</td>
<td>None (±0.5% from mix design target value)</td>
</tr>
<tr>
<td>Binder Content</td>
<td>± 0.2% from mix design target value</td>
</tr>
<tr>
<td>Effective Air Voids</td>
<td>None</td>
</tr>
</tbody>
</table>

The contractor may propose target changes, other than self-directed changes, to the approved mix design for the approval of the Engineer. The Engineer will determine if the proposed target change will result in mix production that meets the contract requirements for mix design criteria and gradation limits. The target changes will not be retroactive for the purpose of acceptance.

321.6 MIX PRODUCTION:

All materials shall be proportioned by weight in a hot mix asphalt plant in the proportions required by the mix design to provide a homogeneous and workable mass. Each hot mix asphalt plant shall be inspected in accordance with the provisions contained in the ‘Hot Mix Asphalt Production Facilities’ by the Arizona Rock Products Association and shall have a current inspection certificate. All measuring devices shall be calibrated at least annually by a technician licensed by the Arizona Bureau of Weights & Measures. Mixing plants shall conform to the requirements of AASHTO M 156, except as modified herein.

In drum mix plants the mineral admixture shall be added and thoroughly mixed with the mineral aggregate by means of a mechanical mixing device prior to the mineral aggregate and mineral admixture entering the dryer. The moisture content of the combined mineral aggregate shall be a minimum of three percent by weight of the aggregate during the mixing process.

For drum-mix plants, the mineral admixture shall be weighed across a weigh belt, or other approved alternative weighing system, with a weight totalizer prior to entry into the mechanical mixing device. The mechanical mixing device shall be a pugmill type mixer that is in good working condition. The rate of the aggregate feed shall not exceed the mixing device’s capacity in ton per hour. The mixer shall be constructed to minimize the loss of mineral admixture and shall be located in the aggregate delivery system at a location where the mixed material can be readily inspected. The mixing device shall be capable of effective mixing in the full range of the asphalt concrete production rates.

The hot plant and equipment shall be constructed and operated to prevent loss of mineral admixture through the dust collection system of the plant.

A positive signal system shall be provided and utilized during production whereby the mixing shall automatically be stopped if the mineral admixture is not introduced into the mineral aggregate. The plant will not be permitted to operate unless the signal system is in good working condition.

The introduction of bituminous material shall be controlled by an automated system fully integrated with the controls or the mineral aggregate and mineral admixture. The production of the plant shall be controlled by the rate
required to obtain a uniform mixture of all components. Drying and heating shall be accomplished in such a manner as to preclude the mineral admixture from becoming coated with un-spent fuel. The completed asphalt concrete may be held in storage for up to 12 hours in insulated or heated silos, providing the minimum temperature noted herein for placement and compaction is met behind the placement device. If the Engineer determines that there is an excessive amount of heat, heat loss, drain down, segregation and/or oxidation of the mixture due to temporary storage, use of surge bins or storage bins will be discontinued.

The temperature of the asphalt concrete, with unmodified binders, upon discharge from the mixer shall not exceed 335 degrees F. The discharge temperature may be increased on the recommendation of the binder supplier, when approved by the Engineer. If the asphalt concrete is discharged from the mixer into a hopper, the hopper shall be constructed so that segregation of the asphalt concrete will be minimized.

321.7 TRANSPORTATION:

Petroleum distillates or other substances that will have a detrimental effect on the asphalt concrete shall not be used as a release agent.

The beds of all transportation units shall be clean and smooth to allow the free flow of material into the paving machine’s hopper.

Tarpaulins shall be furnished on all trucks and used when weather condition warrant, or if directed by the Engineer.

321.8 PLACEMENT:

321.8.1 Placing: All courses of asphalt concrete shall be placed and finished by means of a self-propelled paving machine equipped with an automatically actuated control system, except under certain conditions or at locations where the Engineer deems the use of a self-propelled paving machine impracticable.

The control system shall control the elevation of the screed at each end by controlling the elevation of one end directly and the other end indirectly either through controlling the transverse slope or alternatively when directed, by controlling the elevation of each end independently.

The control system shall be capable of working with one of the following devices:

(A) Ski or non-contact device of not less than 30 feet in length, supported throughout its entire length
(B) Taut stringline or wire set to grade
(C) Short ski or sonar sensing units from curb control
(D) Joint matching shoe

Failure of the control system to function properly shall be cause for the suspension of asphalt concrete production. In order to achieve a continuous operation, the speed of the paving machine shall be coordinated with the hot mix plant and transport units.

If the asphalt concrete is dumped from the hauling vehicles directly into the paving machine, care shall be taken to avoid jarring the machine or moving it out of alignment. No vertical load shall be exerted on the paving machine by the truck.

If asphalt concrete is dumped upon the surface being paved and subsequently loaded in the paving machine, the loading equipment shall be self-supporting and shall not exert any vertical load on the paving machine. Substantially all of the asphalt concrete shall be picked up and loaded into the paving machine.

Self-propelled paving machines shall spread the mixture without segregation or tearing, true to line, grade and crown indicated on the Project plans. Pavers shall be equipped with hoppers and augers that will distribute the mixture uniformly in front of an adjustable floating screed. The raising of the hopper wings must be minimized and the paving machine will not be operated when in an empty condition.
Screeds shall include any strike-off device operated by tamping or vibrating action which is effective, without tearing, shoving or gouging the mixture and which produces a course with a uniform texture and density for the full width being paved. Screeds shall be adjustable as to height and crown and shall be equipped with a controlled heating device for use when required. In the case of the screed, auger extensions and vibrators shall be installed wherever the screed is extended more than one (1) foot beyond the end of the base auger or auger extension. However, when placing material against an extremely uneven curb or edge over a short distance, the Engineer may waive the auger extensions and vibrators.

At any place not accessible to the roller, the mixture shall be thoroughly compacted with tampers to provide a uniform and smooth layer over the entire area compacted in this manner.

321.8.2 Joints: Transverse joints, before a surface course is placed in contact with a cold transverse construction joint, the cold existing asphalt concrete shall be trimmed to a vertical face for its full depth and exposing a fresh face. After placement and finishing the new asphalt concrete, both sides of the joint shall be dense and the joint shall be smooth and tight. The surface in the area of the joint shall not deviate more than ¼ inch from a 12-foot straightedge, when tested with the straightedge placed across the joint, parallel to the centerline.

Longitudinal Joints of each course shall be staggered a minimum of 6 inches with relation to the longitudinal joint of the immediate underlying course cold transverse construction joint, the cold existing asphalt concrete shall be trimmed to a vertical face for its full depth and exposing a fresh face. The fresh face shall be tacked prior to placement of the adjacent course. After placement and finishing the new asphalt concrete, both sides of the joint shall be dense and the joint shall be smooth and tight. The surface in the area of the joint shall not deviate more than ¼ inch from a 12-foot straightedge, when tested with the straightedge placed across the joint, parallel to the centerline. The joint will be tack coated if required by the Engineer.

321.8.3 Asphalt Leveling Course: A leveling course shall be used when specified, or as directed in writing by the Engineer, to bring existing pavement to a uniform grade prior to placing an overlay or other course. If a leveling course is being applied on an Asphalt surface, a tack coat shall be applied. The compaction requirements contained in Section 321.10 do not apply to leveling courses.

321.8.4 Compaction: Asphalt Base Course and Surface Course: It is the contractor’s responsibility to perform any desired Quality Control monitoring and/or testing during compaction operations to achieve the required compaction. The temperature of the asphalt concrete immediately behind the laydown machine shall be referenced to meet the minimum requirements of Table 321.3. A probe type thermometer shall be used to measure the temperature of the asphalt concrete mixture. When measuring the temperature of the mat, the probe shall be inserted at mid-depth and as horizontal as possible to the mat.

| TABLE 321-2 MINIMUM ASPHALT CONCRETE PLACEMENT TEMPERATURE |
|-----------------|---|---|---|---|---|---|---|
| Base Temp (°F) | ¼ | ½ | 1 | 1 ½ | 2 | 3 and greater |
| 40 – 50 | --- | --- | 310 | 300 | 285 | 275 |
| 50 – 60 | --- | 310 | 300 | 290 | 285 | 275 | 270 |
| 60 – 70 | 310 | 300 | 290 | 285 | 275 | 265 |
| 70 – 80 | 300 | 290 | 285 | 280 | 270 | 265 |
| 80 – 90 | 290 | 280 | 270 | 270 | 265 | 260 |
Asphalt compaction equipment shall be of sufficient size and weight to accomplish the required compaction. All compaction equipment shall be operated and maintained in accordance with the manufacturer’s recommendations and the project requirements. During the rolling operation, the speed of the roller shall not exceed 3 miles per hour, unless otherwise approved by the Engineer.

Pneumatic tired compactors shall be equipped with skirt-type devices mounted around the tires so that the temperature of the tires will be maintained during the compaction process.

The Engineer will determine the acceptability of the pavement compaction in accordance with Section 321.10.

321.8.5 Smoothness: The completed surfacing shall be thoroughly compacted, smooth and true to grade and cross-section and free from ruts, humps, depressions or irregularities. An acceptable surface shall not vary more than one-fourth (¼) inch from the lower edge of a 12-foot straightedge when the straightedge is placed parallel to the centerline of the roadway.

321.8.6 Asphalt Concrete Overlay: Asphalt concrete overlay consists of the placing and compacting plant mix asphalt concrete over existing asphalt concrete paving. The thickness of the overlay shall be as shown on the plans or as specified in the special provisions. Preliminary preparation of existing surfaces will be required except when accomplished by the Contracting Agency, and it is so stipulated in the special provisions. With the exception of those which have been preheated and remixed only, existing surfaces shall receive a tack coat.

Asphalt concrete mix aggregate gradation and percentage of asphalt binder shall be in accordance with Section 710 using a 1/2-inch Marshall-Low Traffic asphalt concrete mix designation for overlay more than one and one-half inch in thickness and a 3/8-inch Marshall-Low Traffic asphalt concrete mix designation for overlay one and one-half inch or less in thickness, unless otherwise shown or specified in the special provisions.

Except when they have been preheated and remixed, pavement surfaces shall be prepared as follows:

(a) Before placing asphalt concrete overlay, severely raveled areas or cracked areas that are depressed more than 3/4-inch from the adjoining pavement shall be cut out and patched at least 48 hours prior to the resurfacing operation. Over-asphalted areas or rough high spots shall be either milled or cut out and patched. Large shrinkage cracks shall be filled with asphalt sealing compound acceptable to the Engineer. The entire surface shall be cleaned with a power broom. Raveled areas that do not require removing shall be cleaned by hand brooming. The above are incidental, and the cost thereof shall be included in the bid items.

(b) Before placing asphalt concrete overlay, milling shall be done as shown on the plans or specified in the special provisions and shall be in accordance with Section 317.

(c) After surfaces have been prepared to the satisfaction of the Engineer, they shall receive a tack coat per Section 321.4. Traffic will not be permitted to travel over surfaces which have received a tack coat. When the overlay is to extend onto the concrete gutter, the gutter shall be thoroughly cleaned of loose dust and cement particles and shall be tack coated.

Asphalt concrete overlay shall be placed as specified in Section 321.8.1 and compacted as specified in Section 321.8.4. The surface smoothness shall meet the tolerances specified in Section 321.8.5.

Manholes shall be built up and the frames set flush with the finished surface of the new paving, and tops of value boxes, clean-outs and other existing structures shall be adjusted to finish grade. In the event the base course and original paving have been removed or disturbed in order to build up the manhole, they shall be replaced with

(1) Base on which mix is to be placed
approved materials which shall be thoroughly compacted. The asphalt concrete around the manhole frame shall be completed and made flush with the adjacent overlay.

321.8.7 Pavement Fabric Interlayer: Pavement fabric interlayer shall be used only when specified on the plans or in the specifications. Pavement fabric interlayer shall be in accordance with Table 796-1 and be the class designated on the plans or in the specifications.

Asphalt binder coat used to bond the fabric to the pavement shall be paving asphalt PG 70-10 asphalt cement conforming to the requirements of Section 711. The application and distributing equipment for the asphalt binder shall conform to the requirements of Section 330. The asphalt binder coat shall be uniformly spray applied to the prepared pavement surface at the rate of 0.20 gallons per square yard for Class B fabric or at the rate of 0.25 gallons per square yard for Class A fabric. Some underlying surfaces may require a higher or lower application rate. A test strip may be necessary to determine the proper application rate. The width of liquid asphalt cement application shall be the fabric width, plus six inches.

Neither the asphalt binder coat or fabric interlayer shall be placed when weather conditions, in the opinion of the Engineer, are not suitable. The asphalt binder and fabric interlayer shall only be placed when the pavement is dry, the ambient air temperature is 50 degrees F and rising, and pavement temperature is 40 degrees F and rising.

Equipment for placing the fabric shall be mechanized and capable of handling full rolls of fabric. The equipment shall be able to lay the fabric smoothly to maximize pavement contact and remove air bubbles. Stiff bristle brooms shall be used to smooth the fabric. The equipment used to place the fabric shall be in good working order and is subject to approval by the Engineer.

Pavement fabric interlayer shall not be placed if the in-place binder is hotter than 325 degrees F or has cooled to 180 degrees F or below (as determined by non-contact thermometer).

Pavement fabric interlayer shall be placed onto the asphaltic binder with the heat bonded side up with a minimum amount of wrinkling or folding. Remaining wrinkles or folds 1-inch and larger shall be removed or slit and shingle-lapped in the direction of paving. Burning or torching of wrinkles is not allowed. Fabric shall overlap three to six inches to insure full closure of the joint. Transverse joints shall be shingle-lapped in the direction of paving to prevent edge pickup by the paver. A second application of hand-placed asphalt binder may be required at laps and repairs as determined by the Engineer to ensure proper binding of the narrow double fabric layer.

All areas where fabric has been placed shall be paved with asphaltic concrete during the same workshift. Placement of the asphaltic concrete shall closely follow fabric lay down. The temperature of the asphaltic concrete immediately behind the laydown machine shall not exceed 325 degrees F. In the event that the asphalt binder coat bleeds through the fabric causing construction problems before the overlay is placed, the affected areas shall be sanded with a sand blotter in compliance with Section 333. Excess sand shall be removed before beginning the paving operation. In the event of rainfall prior to the placement of the asphaltic concrete, the fabric shall be allowed to dry before the asphalt concrete is placed.
Turning of the paving machine or of other vehicles on the fabric shall be gradual and kept to a minimum to avoid damage to the fabric. Should equipment tires stick to the fabric during pavement operations, small quantities of paving asphalt concrete shall be broadcast on the fabric to prevent pick-up. Decrease of binder rate in order to minimize pick-up on tires is not allowed.

Table 321.2

Minimum Asphalt Concrete Placement Temperature

<table>
<thead>
<tr>
<th>Base Temp (°F)</th>
<th>Mat Thickness (inches)</th>
<th>¼</th>
<th>⅜</th>
<th>½</th>
<th>¾</th>
<th>1</th>
<th>1½</th>
<th>2</th>
<th>3 and greater</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–50</td>
<td>---</td>
<td>---</td>
<td>310</td>
<td>300</td>
<td>295</td>
<td>290</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50–60</td>
<td>---</td>
<td>310</td>
<td>300</td>
<td>295</td>
<td>290</td>
<td>275</td>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60–70</td>
<td>310</td>
<td>300</td>
<td>295</td>
<td>290</td>
<td>275</td>
<td>270</td>
<td>265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70–80</td>
<td>300</td>
<td>290</td>
<td>285</td>
<td>280</td>
<td>275</td>
<td>270</td>
<td>265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80–90</td>
<td>290</td>
<td>280</td>
<td>275</td>
<td>270</td>
<td>265</td>
<td>260</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 and over</td>
<td>280</td>
<td>275</td>
<td>270</td>
<td>265</td>
<td>260</td>
<td>255</td>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Base on which mix is to be placed

321.9 QUALITY CONTROL:

It is the contractor’s responsibility to perform Quality Control monitoring and/or testing during asphalt concrete production to achieve the required compaction and to perform Quality Control monitoring and/or testing during asphalt concrete production to achieve the required mix properties. The Engineer may obtain samples of any portion of any material at any point of the operations for his own use. Also, the Engineer may order the use of any drying, proportioning and mixing equipment or the handling of any material discontinued which, in his/her opinion, fails to produce a satisfactory mixture.

The asphalt concrete produced shall conform to the requirements of the mix design, production tolerances established in section 321.10. When the asphalt concrete does not conform to the approved mix design production tolerances, it shall be reported to the Engineer, and corrective quality control measures shall be implemented, or production shall cease immediately at no additional cost to the contracting Agency or Engineer.

321.10 ACCEPTANCE:

321.10.1 Acceptance Criteria:

Unless otherwise specified, asphalt concrete will be divided into lots for the purpose of acceptance. A lot shall be considered to be one day’s production. When the quantity of asphalt concrete placed in a day exceeds 500 tons but is less than 2000 tons, the lot shall be divided into 500 ton sublots or fraction thereof. Where the quantity of asphalt concrete placed in a day exceeds 2000 tons, the day’s production will be divided into four (4) approximately equal sublots. A minimum of one sample will be obtained from each lot. Tests used to determine acceptance will be performed by the Engineer or a laboratory employed by the Engineer. In either case the laboratory shall be accredited by the AASHTO Accreditation Program (AAP), for the tests being performed. The acceptance laboratory will take representative samples of the asphalt concrete from each sublot to allow for gradation, binder content, air voids, pavement thickness and compaction of base and surface course. Each sublot will be accepted based upon the test data from the sample(s) from that sublot. All acceptance samples shall be taken using random locations or times designated by the Engineer in accordance with ASTM D 3665.

Revised 2010 2009 1999
321.10.2 Gradation, Binder Content and Air Voids: The acceptance laboratory will take a sample of the asphalt concrete in accordance with the requirements of Section 2 or 4 of Arizona Test Methods 104 or AASHTO T168 from each sublot. The minimum weight of the sample shall be 45 pounds. Asphalt binder content and gradation shall be determined in accordance with AASHTO T308 using the ignition furnace for each sublot. The acceptance laboratory is responsible for obtaining the necessary materials and performing an ignition furnace calibration as outlined in AASHTO T308 for each asphalt concrete mixture utilized on the project. The correction factor used for each test shall be clearly indicated on the report. The bulk density for Marshall Mix designs shall be tested in accordance with AASHTO T245. The bulk density for Gyratory mix designs shall be tested in accordance with AASHTO T312. The maximum theoretical density shall be tested in accordance with the requirements of AASHTO T209, including fan drying per AASHTO T 209 Section 11. Effective voids determined on the laboratory compacted specimens will be determined at a minimum of once per lot in accordance with the requirements of AASHTO T269. Should the testing for effective air voids not meet the “Full Payment” or “No Corrective Action” requirements of Table 321-5, additional testing for laboratory air voids on the remaining sublots will be performed as necessary to determine the extent of the deficiency. Acceptance testing results will be furnished to the contractor within five working days of receipt of samples by the acceptance laboratory. The acceptance laboratory shall ensure that the supplier is provided copies of all reports of acceptance testing performed on asphalt concrete samples taken to determine compliance with specifications.

The allowable deviations for acceptable production of each measured characteristic from the value established in the JMF for each sublot are as follows:

During production, the allowable deviations from the mix design gradation targets are listed in the tables below. The allowable production tolerances may fall outside of the mix design gradation bands:

Table 321-3A: Gradation Acceptance Limits for Marshall Mixes

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>⅜ inch Mix</th>
<th>½ inch Mix</th>
<th>¾ inch Mix</th>
<th>Base Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Aggregate Size</td>
<td>100% passing</td>
<td>---</td>
<td>---</td>
<td>±7%</td>
</tr>
<tr>
<td>Nominal Maximum Aggregate Size</td>
<td>±7%</td>
<td>---</td>
<td>±7%</td>
<td>±6%</td>
</tr>
<tr>
<td>½ inch</td>
<td>---</td>
<td>27%</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>¼ inch</td>
<td>±7%</td>
<td>26%</td>
<td>±6%</td>
<td>±6%</td>
</tr>
<tr>
<td>No. 8 Sieve to the Nominal Maximum Aggregate Size</td>
<td>±6%</td>
<td>±6%</td>
<td>±6%</td>
<td>±6%</td>
</tr>
<tr>
<td>No. 100 and No. 30 Sieve</td>
<td>±4%</td>
<td>±4%</td>
<td>±4%</td>
<td>±4%</td>
</tr>
<tr>
<td>No. 200-Sieve</td>
<td>±2%</td>
<td>±2%</td>
<td>±2%</td>
<td>±2%</td>
</tr>
</tbody>
</table>

Table 321-3B: Gradation Acceptance Limits for Gyratory Mixes

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>⅜ inch Mix</th>
<th>½ inch Mix</th>
<th>¾ inch Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>⅜ inch</td>
<td>---</td>
<td>---</td>
<td>±7%</td>
</tr>
<tr>
<td>½ inch</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
If the results from a single acceptance sample fall outside of the acceptance limits in Table 321-3 a second sample shall be taken and if the second acceptance sample is also outside of the acceptance limits in Table 321-3 the Contractor shall cease production of asphalt concrete. Production shall not begin again until calibration test results verify that adjustments made to materials or proportions yield a gradation that falls within acceptance limits in Table 321-3.

The asphalt binder content shall be considered acceptable if it is within ± 0.40% of the mix design target value. If the asphalt binder content is within ± 0.40% of the mix design target value, the asphalt concrete will be paid for at the contract unit price. If the asphalt binder content is greater than ± 0.40% from the mix design target value, the deficient area will be evaluated within the sublot by coring at maximum intervals of 100 feet from the deficient sample. The asphalt content of the original deficient sample will be averaged with the asphalt binder content of the cores taken for re-evaluation to determine compliance with the acceptance requirements. If the resulting average of the asphalt binder content is greater than ± 0.40% from the mix design target value, then Table 321-4 shall apply to the sublot. Additional cores may be required to define the limits of the deficient area, and shall not be used for re-evaluating acceptance.

| TABLE 321-4 |
ASPHALT BINDER CONTENT CORRECTIVE ACTION FOR DEVIATIONS	ACCEPTANCE AND PENALTIES	
Deviation from that permitted	When the contracting agency is the owner: Payment Reduction ($ per ton of asphalt concrete)	When the contracting agency is not the owner (i.e. permits): Corrective Action
Over 0.0 to 0.1% points	$2.00	EA (see 321.10.6)
Over 0.1 to 0.2% points	$6.00	EA (see 321.10.6)
Over 0.2% points	Removal* or EA per 321.10.6	Removal* or EA per 321.10.6

Note: Removal* refers to Section 321-10.6

If the laboratory air voids fall within a range of 2.8% to 6.2%, the asphalt concrete will be paid for at the contract unit price. If the laboratory air voids are outside of this range, the deficient area will be evaluated within the sublot by coring at maximum intervals of 100 feet from the deficient sample. The laboratory air voids of the original deficient sample will be averaged with the laboratory air voids obtained from each of the cores taken for re-evaluation to determine compliance with the acceptance requirements. If the resulting average of the laboratory air voids is outside the indicated range, then Table 321-5 shall apply to the sublot. Additional cores may be required to define the limits of the deficient area, and shall not be used for re-evaluating acceptance.

| TABLE 321-5 |
| LABORATORY VOIDS ACCEPTANCE AND PENALTIES |
| Laboratory Air Voids (Measured at N_{25} or 75 blows as applicable) | When the contracting agency is the owner: Payment Reduction ($ per ton of asphalt concrete) | When the contracting agency is not the owner (i.e. permits): Corrective Action |

Note: N_{25} refers to the number of blows required to penetrate the specimen at 25°C.
If an agency or Engineer is purchasing asphalt concrete directly from a commercial material supplier, the agency or Engineer will use Section 321.10 and specifically Tables 321-3, 321-4 and 321-5 from Section 321.10 when determining the acceptance of the asphalt concrete with the material supplier.

321.10.3 Surface Testing:
If directed by the Engineer surface drainage test shall be performed. The completed surfacing shall be thoroughly compacted, smooth and true to grade and cross-section and free from ruts, humps, depressions or irregularities. An acceptable surface shall not vary more than 1/4 inch from the lower edge of a 12-foot straightedge when the straightedge is placed parallel to the centerline of the roadway. The straightedge shall be furnished by the contractor and shall be acceptable to the Engineer.

All streets shall be water tested for drainage in the presence of the Engineer or designated representative before final acceptance. Any areas not draining properly shall be corrected to the Engineer’s satisfaction at the Contractor’s expense. Water for this testing shall be provided and paid for by the Contractor.

When deviations in excess of the above tolerance are found, humps or depressions shall be corrected to meet the specified tolerance, or shall be cut out along neat straight lines and replaced with fresh hot mixture and thoroughly compacted to conform with and bond to the surrounding area. Materials and work necessary to correct such deviations shall be at no additional cost to the Contracting Agency.

321.10.4 Asphalt Pavement Thickness:
Asphalt Pavement thickness will be determined from cores secured from each sublot for this purpose. Such cores will be taken and measured by the Asphalt Concrete Coring Method. This method can be found at in Section 321.14. Each core location will be patched by the party responsible for the testing.

If the pavement thickness is deficient from the target thickness by 0.25 inches or less, it will be paid for at the contract unit price. If the pavement thickness deficiency is greater than 0.25 inches and the contracting agency is not the owner (i.e. permits) the following steps will apply:

1. If the thickness deficiency of the pavement exceeds 0.25 inch, the limits of the deficient area will be isolated/evaluated by coring at maximum intervals of 100 feet from the deficient core. The thicknesses of the original deficient core will be averaged with the thicknesses of the cores taken from 100 feet on each side of it to determine compliance with the acceptance requirements. If the resulting average thickness deficiency is greater than 0.25 inch, then Table 321-6 shall apply to the sublot. Additional cores may be required to define the limits of the deficient area, and shall not be used for re-evaluating acceptance.

2. If the pavement thickness from step one above deviates from the target thickness by more than 0.25 inch but not more than 0.50 inch, corrective action will be required. This corrective action will consist of application of a Type II slurry seal coat in accordance to Section 715. The Contractor may present an engineering analysis outlining other proposed remedial measures for the consideration of the Engineer. The Engineer will review the engineering analysis and decide within 30 working days whether to accept the proposed remedial measures.

<table>
<thead>
<tr>
<th>Less than 1.5%</th>
<th>Removal* or EA per 321.10.6</th>
<th>Removal* or EA per 321.10.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5-2.0%</td>
<td>$2.50</td>
<td>EA (see 321.10.6)</td>
</tr>
<tr>
<td>2.1-2.7%</td>
<td>$1.00</td>
<td>EA (see 321.10.6)</td>
</tr>
<tr>
<td>2.8-6.2%</td>
<td>Full Payment</td>
<td>No corrective action</td>
</tr>
<tr>
<td>6.3-6.9%</td>
<td>$1.00</td>
<td>EA (see 321.10.6)</td>
</tr>
<tr>
<td>7.0-8.0%</td>
<td>$2.50</td>
<td>EA (see 321.10.6)</td>
</tr>
<tr>
<td>Greater than 8.0%</td>
<td>Removal* or EA per 321.10.6</td>
<td>Removal* or EA per 321.10.6</td>
</tr>
</tbody>
</table>

Note: Removal* refers to Section 321-10.6
Revised 2011 1999
(3) If the pavement thickness from step one above deviates from the target thickness by more than 0.50 inch, corrective action will be required. The deficient area will be overlaid with no less than 1 inch thick lift, for the full width of the pavement to meet or exceed the designed thickness, with the appropriate end and edge milling, with a mixture approved by the Engineer. The Contractor may present an engineering analysis outlining other proposed remedial measures for the Engineer’s consideration. The Engineer will review the engineering analysis and decide within 10 working days whether to accept the proposed remedial measures. If the Engineer chooses to reject the engineering analysis, the indicated overlay will be constructed by the Contractor at no additional cost to the Owner.

If the pavement thickness deficiency is greater than 0.25 inches and the contracting agency is the owner, Table 321-6 will apply.

<table>
<thead>
<tr>
<th>Specified Mat Pavement Thickness</th>
<th>Reduction in Payment or Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1.5 inches</td>
<td>50%</td>
</tr>
<tr>
<td>1.50 inches to 1.99 inches</td>
<td>33%</td>
</tr>
<tr>
<td>2.00 inches to 2.49 inches</td>
<td>25%</td>
</tr>
<tr>
<td>2.50 inches to 2.99 inches</td>
<td>20%</td>
</tr>
<tr>
<td>3.00 inches and over</td>
<td>17%</td>
</tr>
</tbody>
</table>

321.10.5 Density:

321.10.5.1 Pavement Thickness 1-1/2 Inches or Less in Nominal Thickness:

Compaction shall consist of a “Rolling Method Procedure” using an established sequence of coverage with specified types of compactors. A pass shall be defined as one movement of a compactor in either direction. Coverage shall be the number of passes as are necessary to cover the entire width being paved.

The rolling sequence, the type of compactor to be used, and the number of coverages required shall be as follows:

<table>
<thead>
<tr>
<th>Rolling Sequence</th>
<th>Type of Compactor</th>
<th>No. of Coverages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>Static Steel</td>
<td>1</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Pneumatic Tired</td>
<td>4</td>
</tr>
<tr>
<td>Finish</td>
<td>Static Steel</td>
<td>1/3</td>
</tr>
</tbody>
</table>

* Based on the roller pattern which exhibits the best performance.

The Contractor shall select the option for compaction and, when pneumatic-tired compactors are used, will designate the tire pressure. Steel wheel compactors shall not be used in the vibratory mode for courses of one inch or less in thickness nor when the temperature of the asphaltic concrete falls below 180 degrees F. Initial and intermediate compaction shall be accomplished before the temperature of the asphaltic concrete falls below 200 degrees F.
Compaction will be deemed to be acceptable on the condition that the asphaltic concrete is compacted using the type of compactors specified, ballasted and operated as specified, and with the number of coverages of the compactors as specified.

321.10.5.2 Pavement Thickness Greater than 1-1/2 Inches in Nominal Thickness:

Achieving the required compaction is the responsibility of the contractor. The number and types of rollers is the contractor’s responsibility and shall be sufficient to meet these requirements.

In-place air voids shall be determined in accordance with AASHTO T269 utilizing cores taken from the finished pavement. The maximum theoretical density used in the determination of in-place air voids will be the average value from the acceptance samples determined for the Lot as outlined in 321.10.1.

The Engineer will designate two random test locations for each sublot and the acceptance laboratory will obtain two cores from each location. The two cores will be averaged for acceptance. The outside one foot of each pass of the pavement course or any unconfined edge will be excluded from testing. The Engineer may exclude areas from the compaction lot that are not accessible by normal compaction equipment.

The Contractor will provide the traffic control to facilitate any coring operations necessary for compaction acceptance.

Cores will be taken per the Asphalt Concrete Coring Method. This method can be found in Section 321.14. The acceptance laboratory will furnish test results will be furnished to the contractor within three working days of receipt of the cores.

If the pavement density has in-place voids of 8.0% or less, the asphalt concrete will be paid for at the contract unit price. If the pavement density has in-place voids greater than 8.0%, the limits of the deficient area will be isolated within the sublot by coring at maximum intervals of 100 feet from the deficient core. If both cores in a sublot are deficient, 3 to 4 additional cores may be necessary to re-evaluate acceptance. The in-place voids of all the original deficient cores, whether deficient or acceptable, will be averaged with the in-place voids of the cores taken from 100 feet on each side of it for re-evaluation to determine compliance with the acceptance requirements. If the average of the in-place voids is greater than 8.0% then Table 321-6 shall apply to the sublot. Additional cores may be required to define the limits of the deficient area, and shall not be used for re-evaluating acceptance.

<table>
<thead>
<tr>
<th>TABLE 321-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVEMENT DENSITY PENALTIES</td>
</tr>
<tr>
<td>Limits of In-place Air Voids Less for lift thicknesses greater than 1.5 inches</td>
</tr>
<tr>
<td>8.1% to 9.0%</td>
</tr>
<tr>
<td>9.1% to 10.0%</td>
</tr>
<tr>
<td>10.1% to 11.0%</td>
</tr>
</tbody>
</table>
10.6 The Contractor shall remove and replace the entire sublot that is deficient. Removal for In-place Air Voids greater than 11.0% is not eligible for Section 321.10.6.

321.10.6 Engineering Analysis (EA): Within 10 working days after receiving notice that a lot or sublot of asphalt concrete is deficient and is found to fall within the “Removal” or “Engineering Analysis” band per Tables 321-6 and 321-9, the contractor may submit a written proposal (Engineering Analysis) to accept the material in place at the applicable penalties along with possible remediation(s) listed in the “Removal or EA” category. Engineering Analysis can also be proposed for non-removal categories of “Corrective actions” when the contracting agency is not the owner (i.e. permits).

The Engineering Analysis shall contain an analysis of the anticipated performance of the asphalt concrete if left in place. The Engineering Analysis shall also detail the effect of any proposed corrective action on the material(s) in place as it relates to the in-place material’s performance. The Engineering Analysis shall be performed by a professional engineer experienced in asphalt concrete testing and mix designs. If the lot or sublot is submitted for referee testing by the contractor, the ten working days allowed to prepare an engineering analysis will begin upon notification of referee test results.

When an Engineering Analysis recommends that a specific lot or sublot should not be removed, the Engineering Analysis will recommend that the following penalties (Table 321-8) be paid when the contracting agency is the owner, for the specific criteria being reviewed by the EA.

<table>
<thead>
<tr>
<th>Acceptance Criteria</th>
<th>Acceptance Limits</th>
<th>Penalty When Contracting Agency is the Owner ($/Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Binder Content</td>
<td>Over 0.2% points from that Permitted</td>
<td>$9.00</td>
</tr>
<tr>
<td>Laboratory Air Voids (Measured at Ndes or 75 blows as applicable)</td>
<td>Less than 1.5% or Greater Than 8.0%</td>
<td>$3.75</td>
</tr>
<tr>
<td>Limits of In-place Air Voids</td>
<td>10.1% to 11.0%</td>
<td>$9.00</td>
</tr>
</tbody>
</table>

Within 15 working days, the Engineer will determine whether or not to accept the contractor’s proposed Engineering Analysis.

321.11 REFEREE:

In the event the contractor elects to question the acceptance test results for either asphalt binder content, laboratory air voids, density or a combination thereof for a sublot, the Contractor may make a written request for additional testing of that sublot. Any request for referee testing must describe the contractor’s reasons for questioning the validity of the original acceptance results and must clearly describe which set of acceptance tests are in question. The Contractor will engage an independent laboratory (at the Contractor’s own expense) who is accredited by AAP in all of the acceptance test methods. The independent laboratory shall be acceptable to the Engineer and shall perform a complete new set of acceptance tests (as required by Section 321.10 representing the area or set of tests in question). The results of these determinations will be binding on both the contractor and the agency. If the test results obtained by the independent laboratory result in elimination or reduction of the magnitude of the applicable penalty the contracting Agency will bear the cost of the referee testing. If the applicable penalty remains unchanged or increases, the cost for verification testing will be deducted from payments that were to be made to the contractor.
These tests shall include asphalt binder content, aggregate gradation, Marshall or Gyratory unit weight, and maximum theoretical unit weight, laboratory air voids and in-place air voids (compaction). Samples for referee testing shall come from representative samples obtained from the completed pavement, as directed by the Engineer.

The number of samples taken will be the same as specified in Section 321.10. The independent laboratory shall compile the test results and transmit them to both the Engineer and the Contractor. The independent laboratory shall include a letter signed by an Engineer registered in the State of Arizona, who is experienced in asphalt concrete testing and mix design development. The signed letter shall give an opinion that the material evaluated either does or does not comply with project specifications, and shall clearly describe any deficiencies, and the results will be binding between all parties.

321.12 MEASUREMENT:

Asphalt concrete pavement will be measured by the ton, or by the square yard, for the mixture actually used as allowed above, which shall include the required quantities of mineral aggregates, asphalt binder, and mineral admixture. Measurement shall include any tonnage used to construct intersections, roadways, streets, or other miscellaneous surfaces indicated on the plans or as directed by the Engineer.

321.13 PAYMENT:

The asphalt concrete measured as provided above will be paid for at the contract price per ton or square yard, as adjusted per Section 321.10, which price shall be full compensation for the item complete, as herein described and specified.

Payment for tack coat will be by the ton diluted, based on the rate of application, as directed by the Engineer.

No payment will be made for any overrun in quantity of asphalt concrete in excess of 10 percent based on actual field measurement of area covered, design thickness, and the mix design unit weight. The calculations and payment for overrun will be by individual pay item. To compensate or adjust for a thickness deficiency in an underlying asphalt concrete course, the Engineer may authorize a quantity increase in excess of 10 percent for a subsequent asphalt concrete course. In such cases, the quantity in excess of 10 percent will be paid for at the lowest unit price.

Except as otherwise specified in the special provisions, no separate payment will be made for work necessary to construct miscellaneous items or surfaces of asphalt concrete.

321.14 ASPHALT CORE METHOD: Core Drilling of Hot Mix Asphalt (HMA) for Specimens of 4” or 6” diameter

321.14.1 Scope: This method is to establish a consistent method of the use of a diamond bit core to recover specimens of 4 or 6 inch diameter for laboratory analysis and testing. The method will require the use of: water, ice (bagged or other suitable type), dry ice, and a water-soap solution to be utilized when coring asphalt rubber concrete. Individuals doing the specimen recovery should be observing all safety regulations from the equipment manufacturer as well as the required job site safety requirements for actions, and required personal protective equipment.

321.14.2 Core Drilling Device: The core drilling device will be powered by an electrical motor, or by an acceptable gasoline engine. Either device used shall be capable of applying enough effective rotational velocity to secure a drilled specimen. The specimen shall be cored perpendicularly to the surface of pavement, and that the
sides of the core are cut in a manner to minimize sample distortion or damage. The machinery utilized for the
procedure shall be on a mounted base, have a geared column and carriage that will permit the application of variable
pressure to the core head and carriage throughout the entire drilling operation. The carriage and column apparatus
shall be securely attached to the base of the apparatus; and the base will be secured with a mechanical fastener or
held in place by the body weight of the operator. The core drilling apparatus shall be equipped with a water spindle
to allow water to be introduced inside of the drill stem while operating. The cutting edge of the core drill bit shall be of
hardened steel or other suitable material with embedded diamond chips in the cutting surface. The core barrel shall
be of sufficient diameter to secure a specimen that is a minimum of four or six inches or whichever is prescribed for
necessary testing. The core barrel shall not be missing more than one of the teeth used for cutting; if so it shall be
discarded and another barrel shall be used. The core barrel shall also be a minimum of two inches longer than the
anticipated depth of pavement in accordance with project paving plans.

321.14.3 Accessory Equipment: A sufficient supply of ice and dry ice shall be provided to sufficiently cool the
pavement prior to securing the samples from the designated areas in the pavement. The ice should also be used to
adjust the temperature of the water used to cool the core bit. A water supply (usually a plastic 35 – 55 gal drum)
with sufficient hose to introduce the water into and through the spindle of the coring device by gravity feed. The
drum should be white or light in color to minimize excessive thermal heating of the water (for coring of asphalt
rubber cores see Note 1). At no time shall the water utilized in the coring operation exceed 65°F during the coring
operation. Ice shall be utilized o ensure the temperature control of the water being introduced during the cutting
operation. An ice chest or other suitably insulated container that can maintain a temperature of less than 70°F shall
be used to secure the specimens during transport. The container will be equipped with flat shelving that will support
the drilled cores throughout the entire specimen dimension during transport back to the testing facility.

Miscellaneous hand tools to remove the drilled specimen from the drill hole or the core barrel taking great care in
not disturbing the specimen more than necessary (refer to fig. 1 in ASTM D 5361-05).

321.14.4 Process: The pavement surface at the time of coring shall not exceed a temperature of 90°F, the pavement
shall be conditioned with ice or dry ice to ensure that this requirement is met. Immediately after it has been ensured
that the pavement has dropped to the required temperature, core drilling shall begin. The operator will then apply an
even and continuous pressure (Note 2) to penetrate through the full depth of the pavement. The operator will
concurrently ensure that enough water is moving over the core surface as to adequately remove any and all cuttings
that could damage the drilled core. After the pavement thickness has been penetrated the core shall be carefully
removed from either the drill hole or the core barrel and be immediately transferred to an ice chest or other suitable
container. Each individual core shall be placed on a shelf in the cooler with the exposed side of the specimen facing
down, or the “top side” down. If the specimen is a two lift core, the only acceptable means of separating lifts is with
a power or other acceptable wet saw type of equipment (conforming to ASTM D 5361-05); however, at no time
shall cores be split using a mallet and screwdriver or metal straight edge when being tested for bulk density.
Perpendicularity of the specimen shall be checked in the field after the specimen has been extracted from the
surface. The core operator shall hold the core up to eye level and place the core top side down in a “speed square” or
small carpenters square. The specimen placed in the square shall not depart from perpendicular to the axis more than
0.5° (approximately equivalent to 1/16 of an inch in 6 inches). If the specimen is outside of this distance from square
it shall be discarded in the field and another sample cored that falls within tolerance. The cores upon arriving at the
laboratory for testing shall be carefully cleaned and measured for thickness in accordance with ASTM D 3549. A
speed square shall be utilized to measure squareness as compared to a 90° degree angle and shall not depart from
perpendicular to the axis more than 0.5° (approximately equivalent to 1/16 of an inch in 6 inches). All remaining
testing shall be done within the parameters of the current project and / or agency required specification.
• **Note 1** – It should be noted that when the material to be cored is a rubberized asphalt mixture a wetting agent such as liquid dish soap shall be added to the water barrel to hinder the material from sticking or allowing the binder to spread during coring.

• **Note 2** – This refers to pressure exerted on the core barrel and machine during the coring process. Too much pressure can cause damage to the core barrel and the motor; and too little pressure can cause a glazing of the diamonds, reducing cutting efficiency and premature wear of the barrel.