DATE: July 13, 2011

TO: MAG Specifications and Details Committee Members

FROM: Warren White, City of Chandler

RE: Update MAG specifications for brass and bronze water line construction materials to meet federal low lead standards.

Purpose: Modify MAG specifications to meet the national standards based on the new NSF 61-8 Annex F & G (effective on July 1, 2012) and the new Federal Law S. 3874 (effective on January 4, 2014).

Revisions: Modify Sections 610, 630, 631, 754 and 755 as noted herein.
SECTION 610

WATER LINE CONSTRUCTION

610.1 DESCRIPTION:

The construction of all water lines shall conform to applicable standard specifications and details, except as otherwise required on the plans or as modified in the special provisions.

610.2 GENERAL:

All pipe shall be delivered, handled and installed in accordance with the manufacturer's recommendations and/or applicable provisions of AWWA standards for installation of the various types of water mains specified, insofar as such recommendations and provisions are not in variance with the standard specifications and details.

Where water lines are to be constructed in new subdivisions or in conjunction with street repaving projects, the streets shall be pre-graded to within 6 inches of the new street subgrade prior to trenching or cut stakes shall be set for trenching.

610.3 MATERIALS:

All pipe for water lines shall be of the classes shown on the plans or as specified below.

(A) The 4 inches through 16 inches diameter pipe may be asbestos-cement or ductile iron, except where a particular material is specified. All pipe shall be minimum 150 P.S.I. design unless otherwise specified.

(B) Pipe 16 inches and larger may be either ductile iron, or concrete pressure pipe-steel cylinder type.

Service Material containing Brass or Bronze must comply with the current NSF 61-8 Standards at the time the Project begins.

All Brass or Bronze service material must meet the current AWWA C-800 Standards and be made in the USA or Canada.

Any product used in water line construction containing brass or bronze that comes in contact with potable water shall meet the current NSF Standards and Federal Law.

610.4 CONSTRUCTION METHODS:

All water mains in major streets shall have a minimum cover of 48 inches over the top of the pipe. Water mains in other locations shall have a minimum cover over the top of the pipe as follows:

(A) 36 inches for mains smaller than 12 inches.

(B) 48 inches for mains 12 inches and larger.

Cover for water mains will be measured from existing or proposed finished grade of pavement or from natural ground, whichever is deeper.

No water main shall be deflected, either vertically or horizontally, in excess of that recommended by the manufacturer of the pipe or coupling, without the appropriate use of bends or offsets.

If adjustment of the position of a length of pipe is required after it has been laid, it shall be removed and rejoined as for a new pipe.

Every precaution shall be taken to prevent foreign material from entering the pipe. When on the project site, the ends of the pipe section shall be plugged, wrapped or tarped at all times when pipe laying is not in progress, which includes storage and staging at the site. The pipe shall be stored on a pallet, blocking or other means to prevent foreign materials from entering.
Valves 20 inches and smaller may be furnished with flanged ends, mechanical joint ends, or push-on joint ends compatible with the type of pipe used, unless otherwise noted.

630.3.2 Supplements Specifically Relating to Valve Sizes:

(A) Valves smaller than 3 inches:
Valves shall be Jones, Ford, Hayes, Mueller or an approved equal, and shall be threaded, all bronze, standard double disc, non-rising stem with wheel handles or brass ball style.

Service Material containing Brass or Bronze must comply with the current NSF 61-8 Standards at the time the Project begins.
All Brass or Bronze service material must meet the current AWWA C-800 Standards and be made in the USA or Canada.

(B) Valves 3 inches through 12 inches:
Valves shall be iron body resilient-seated gate valves in accordance with the latest revision of AWWA C-509 or AWWA C-515.
The valve shall be designed to work equally well with pressure on either side of the gate.
The valve shall be equipped with o-ring packing.

(C) Valves 14 inches through 20 inches:
Valves shall be iron body resilient-seated gate valves in accordance with the latest revision of AWWA C-509 or AWWA C-515, or shall be double-disc gate in accordance with AWWA C-500.
Valves designed in accordance with AWWA C-509 shall be designed to work equally well with pressure on either side of the gate.
Valves designed in accordance with AWWA C-500 shall be equipped with bronze tracks, rollers and scrapers. The bolts, nuts, studs, etc., used with the gear case shall conform the requirements for Bonnet Bolting in AWWA C-500.
Valves shall be for operation in a horizontal position. The valve shall have bevel gears. The gears and stuffing box shall be enclosed in a watertight iron case, for operation in a buried location. The case shall be filled with grease at the factory.
By-pass valves shall be furnished and installed on each valve unless otherwise indicated on the approved plans. See Table 630-1 for by-pass valve sizes.

(D) Valves 24 inches and larger:
Valves shall be double-disc gate in accordance with AWWA C-500.
Valves shall be for operation in the horizontal position and equipped with bronze tracks, rollers and scrapers. Values shall have bevel gears. The gears and stuffing box shall be enclosed in a watertight iron case, for operation in a buried location. Bolts, nuts, studs, etc., used with the gear case shall conform to the requirements for Bonnet Bolting in AWWA C-500. The case shall be filled with grease to the factory.
By-pass valves shall be furnished and installed on each valve unless otherwise indicated on the approved plans. See Table 630-1 for by-pass valve sizes.

630.4 TAPPING SLEEVES AND VALVES:
SECTION 631

WATER TAPS AND METER SERVICE CONNECTIONS

631.1 DESCRIPTION:

This specification covers work by Contractors installing water services in new subdivisions by Permit and in projects under Contract. All the materials used shall comply with applicable standard specifications and the work performed in accordance with these specifications and standard details. The service connections shall be complete and all material shall be furnished by the Contractor except for the water meter.

All water service connections shall be constructed of Type K copper tubing or ultra high molecular weight polyethylene pipe of nominal iron pipe outside diameter.

All new subdivision water lines shall be staked for line and grade at 100 foot intervals by the Developer's Engineer prior to construction. All meter locations shall be staked by setting two stakes for line and marking one of the stakes for grade.

631.2 MATERIALS:

Copper pipe, tubing and fittings shall conform with Section 754. Polyethylene pipe shall conform with Section 755. All fittings, pipe and tubing for polyethylene and copper pipe shall be as noted on standard details and as indicated in Section 610.3 Materials.

631.3 INSTALLATIONS:

631.3.1 General: Installation of copper tubing for meter service connections shall be in accordance with Section 754. Meter service connection with copper tubing shall be in accordance with standard details. The water service connection shall include the tap on the main, the corporation stop, the saddle if applicable, service pipe, appurtenant fittings, the curb stop, meter box and meter box cover, in accordance with standard details. Water meter boxes shall be installed in accordance with standard details to line and grade set by the Developer's Engineer. Upon acceptance, the Developer shall be responsible for damage to water meter boxes and covers until such time as the meters are installed by the Contracting Agency.

After the installation and acceptance of the water main and meter service pipe connections the water meter will be installed by the Contracting Agency upon proper application and payment of prevailing fees.

631.3.2 Standards: Except as otherwise specified all work shall be done in accordance with Sections 601 and 610.

631.3.3 Excavation and Backfill: The backfilling and compaction may be done as soon as the service line is installed, except backfilling and compaction shall not be completed around the corporation stop at the main water line until after inspection and recording of all tap locations. Trench bottom must be smooth and free of sharp objects. The minimum width of trench for water service pipe shall be 3 inches. The minimum depth of service pipe shall be 30 inches below the finished paving grade.

631.3.4 Polyethylene Pipe: Polyethylene pipe shall not be kinked, gouged or damaged during installation and backfilling operations. The pipe shall be placed in the trench allowing at least 12 inches per 100 feet for thermal contraction and expansion. Polyethylene pipe has a high thermal expansion and should never be confined under tension. The pipe should not be stored in the sun or left in the trench under abnormal high temperature. The pipe shall be carefully snaked in the trench bottom and covered up with uniform slack throughout its length. In trenches less than 8 inches in width, the expansion shall be obtained by making the tap on the opposite side of the main from the water meter and providing a loop of slack service pipe back over the top of the water main. Before installing, inspect pipe to detect any damage that may be caused by shipping, storage or handling. Damage spots can be cut out and pipe recoupled with Ford C-66-33, C-66-44, or approved equal brass compression fitting to form a continuous length. Damaged pipe shall not be used. Polyethylene pipe shall be cut only with a tubing cutter with rollers properly designated for the size of pipe being cut. When polyethylene pipe is used, the meter box setting must be placed parallel to the back of the sidewalk in accordance with standard details. Polyethylene pipe shall be installed with large sweeping bends with radius of not less than 18 inches. Polyethylene pipe has a cold flow
COPPER PIPE, TUBING AND FITTINGS

754.1 PIPE AND TUBING:

All copper pipe and tubing shall be new seamless copper pipes and tubes, designed for underground water services, plumbing purposes, etc. They shall conform to all the requirements of ASTM B-88, Type K.

All pipe or tubing shall be made of copper free from cuprous oxide, as determined by microscopic examination at a magnification of 75 diameters.

Type K tubing, when furnished in coil, shall be annealed after coiling.

754.2 FITTINGS:

All fittings used in connection with copper pipe or tubing, shall be copper or bronze fittings as manufactured by Jones, Mueller, or approved equal, as shown on standard details.

Service Material containing Brass or Bronze must comply with the current NSF 61-8 Standards at the time the Project begins.

All Brass or Bronze service material must meet the current AWWA C-800 Standards and be made in the USA or Canada.
POLYETHYLENE PIPE FOR WATER DISTRIBUTION

755.1 GENERAL:

This specification is intended to describe water service pipe with a hydrostatic design stress of 620 psi for water at 73.4 °F. produced from a high density ultrahigh molecular weight polyethylene pipe compound. Polyethylene pipe used for water distribution shall conform to all the requirements of ASTM D-2239 and with the additional provisions listed herein. This specification describes pipe of the nominal I.D. and O.D. size as manufactured by Carlon, Celanese, Orangeburg, Phillips 66 Drisco pipe and Triangle Aycee and shall provide a water pressure tight joint when used with compression type fittings furnished by Hays, Haystite, Ford Meter Box, Ford Pack Joint, or approved equal.

Service Material containing Brass or Bronze must comply with the current NSF 61-8 Standards at the time the Project begins.

All Brass or Bronze service material must meet the current AWWA C-800 Standards and be made in the USA or Canada.

Pipe may be rejected for failure to comply with any requirements of these specifications.

755.2 MATERIAL:

The polyethylene extrusion compound from which the pipe is extruded shall meet the requirements of Type III, Grade 34, Class C, material as described in ASTM D-1248, except that the melt index shall be determined under a higher temperature than ASTM D-1238. The test condition shall be as specified below under tests of pipe.

The pipe shall be homogeneous throughout and free of visible cracks, holes, foreign inclusions or other defects. The pipe shall be uniform in color, opacity, density, and other physical properties.

755.3 PIPE DIMENSION AND TOLERANCES:

The average inside diameters, wall thickness, and respective tolerances shall be, for any cross section, as shown in ASTM D-2239, when measured in accordance with ASTM D-2122.

The standard thermoplastic pipe dimension ratio (SDR), the ratio of the pipe diameter to wall thickness, shall not exceed 7 for 160 psi design pressure.

755.4 MINIMUM BURST PRESSURE:

The minimum burst pressure for pipe made from Type III, Grade 34, Class C, polyethylene compound, Designation Code: PE-3406, when determined with at least 5 specimens shall be at least equal to 630 psi for water at 73.4°F. Pressures shall be determined in accordance with ASTM D-1599.

755.5 SUSTAINED PRESSURE:

In addition to passing the sustained pressures given in ASTM D-2239 for a temperature of 100°F. and 73.4°F. the pipe shall withstand, without failing, ballooning, bursting or weeping for a period of at least 300 hours, at 194 ± 2°F., 113 psi test pressure for 3/4 inch pipe and 112 psi for 1 inch pipe. These test pressures have been calculated on a basis of a 450 psi fiber stress. The test procedure outlined in ASTM D-1598, shall be followed.

755.6 TESTS OF PIPE:

The pipe must be able to meet all tests that are specified in ASTM D-2239, and the following test for melt index, as determined in ASTM D-1238. Pellets of the original resin, placed into the testing device shall have flow rates as follows:

(A) Less than 0.5 grams per 10 minutes at 310°C with a plunger load of 27.5 pounds for pipe or tubing extruded by the Allied Chemical Process.