Maricopa Association of Governments
Greening Water and Wastewater Infrastructure Workshop

Green Energy Utilization of
91st Ave WWTP Digester Gas

January 12, 2010
Previous SROG Studies

- 1995 Digester Gas Utilization Study
- 2004 Digester Gas Scrubbing System Evaluation
- 2008 Bio-solids Management Study
91st Ave WWTP

- 140 MGD 2009 Avg Daily Flow
- Primary Treatment
- Conventional Activated Sludge
- Anaerobic Digestion
Typical WWTP Solids Schematic:
Unit Solids Balance, Gas Generation and Available Energy for 1 mgd WWTP Capacity

- 15 cf gas/ # VSS destroyed
 - = 16,000 cf/ Mgal treated
 - = 600 Btu/ cf
 - = 9.5 MBtu/ da/ mgd
 - = 30 kw

1 mgd

Primary Clarifiers
1,500 #/da/mgd @ 80% Volatile

Final Clarifiers
1,200 #/da/mgd @ 78% Volatile

Thickener
2,700 #/da/mgd @ 79% Volatile

Anaerobic Digesters
1,100 #/da/mgd destroyed

Biogas
1,600 #/da/mgd @ 65% Volatile

Dewater

0.8 t dry solids/da/mgd
= 3.2 t wet solids/da/mgd @ $20 - $50/t wet solids
= $23k - $58k/ yr/ mgd
91st Ave Solids Treatment

- 16 Anaerobic Digesters
- 317,000 Pounds/day Primary Solids
- 117,000 Pounds/day Secondary Solids
91st Ave WWTP Digester Gas Production

- Raw Gas Production: Daily avg. & 30 day moving avg
- Gas Currently Flared: Daily avg. & 30 day moving avg
- Gas used for Heating: Daily avg. & 30 day moving avg

Average Biogas Flowrate (scfm)

Jan-05 Jan-06 Jan-07 Jan-08 Jul-05 Jul-06 Jul-07 Jul-08

- 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Raw Gas Production
Gas Currently Flared
Gas used for Heating
91st Ave WWTP Digester Gas Production

- 2.97M Cu Ft/day Total Gas Production
- 0.47M Cu Ft/day Digester Heating
- 2.51M Cu Ft/day Flared
- 1500 MBtu/day
Gas Utilization Strategies

- On-Site Power Generation: Heat Rate = 13,000 btu/kwh
- LNG
- Bio-solids Drying
- Pipeline Quality NG with Power Generated at Combined Cycle Plant: Heat Rate = 7,000 btu/kwh
Considerations

- Efficiency
- Revenue
- Emissions
- Carbon Offsets
Pipeline Quality Gas Cleaning Best Strategy

- Efficiency
- Revenue
- Emissions
- Carbon Offsets

Green Power Produced At High Efficiency Power Plant

El Paso Gas Line

Digesters

Currently Land Application

2.5 mcf/da summer
1.8 mcf/da winter

Foam/Sediment
H₂S
Siloxane
CO₂
Sempra Energy Will Contract To Purchase Raw Gas and Generate Green Power

- 11
Emissions Favor Pipeline Quality Gas Cleaning

Emissions of Different Combustion Technologies

- CO
- NOx
- PM
- SOx

Title V Thresholds

Potential to Emit-Tons per Year

Existing Flare Gas Cleaning IC Boiler Fuel Cell Microturbines
El Paso Pipeline Convenient To 91st Ave WWTP
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Digester Gas</th>
<th>Pipeline Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Value</td>
<td>BTU/scf</td>
<td>600</td>
<td>990-1150</td>
</tr>
<tr>
<td>Water Content</td>
<td>ppm</td>
<td>70000</td>
<td>150</td>
</tr>
<tr>
<td>H₂S</td>
<td>ppm</td>
<td>1000-2000</td>
<td>4</td>
</tr>
<tr>
<td>Mercaptans</td>
<td>ppm</td>
<td>trace</td>
<td>5</td>
</tr>
<tr>
<td>Total Sulfur</td>
<td>ppm</td>
<td>1000-2000</td>
<td>12.6</td>
</tr>
<tr>
<td>CO₂</td>
<td>vol %</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>O₂</td>
<td>vol %</td>
<td>trace</td>
<td>0.2</td>
</tr>
<tr>
<td>Inerts</td>
<td>vol %</td>
<td>trace</td>
<td>4</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>gas dew pt.</td>
<td>>45F</td>
<td>45F</td>
</tr>
<tr>
<td>Wobbe</td>
<td></td>
<td>641</td>
<td>1279-1385</td>
</tr>
<tr>
<td>Pathogens</td>
<td></td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Siloxanes</td>
<td>ppb</td>
<td>0 – 11000</td>
<td>70</td>
</tr>
<tr>
<td>Ammonia</td>
<td>ppm</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Methane Content</td>
<td>vol %</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>psig</td>
<td>0.3</td>
<td>600</td>
</tr>
</tbody>
</table>
Gas Cleaning Schematic

- **H₂S Removal:** Chemical Scrubber
- **Siloxane Removal:** Adsorption Media
- **CO₂ Removal:** Pressure Swing Adsorption
H₂S Removal

- Wet Scrubber
- Proprietary Chemicals
- Sulfur Cake Disposal
Siloxanes

- Family of man-made organic silicon compounds (Silicon, oxygen, and methane)
- Relevant to WWTP and landfills only
 - From consumer products
 - Volatilizes under digestion conditions
 - Can deposit silicon dioxides when burnt
Siloxane Removal

- Adsorption
 - Activated Carbon
 - Proprietary Media
Pressure Swing Absorption (PSA)

- Zeolite or other solid sorbent in packed bed
- Impurities that can be captured depends on the solid
- Simpler than a solvent system

IEA, 2003
H₂S/Siloxane Gas Cleaning Schematic

Gas Source
- 90-100 °F

Booster (5 psig)

Gas Source

Compressor
- 200 °F
- 130 psig

Coalescer
- 112 °F

Gas/Gas Exchanger

Chiller
- 77 °F

Gas/Liquid Exchanger

Condenser
- 300 °F

Hot Gas Source

Drain

PSA System

H₂S Removal

125 psig

98% + Methane

Stage 1 Compressor

98% + Industrial Grade CO₂

Stage 2 Compressor

600 psig +

To Pipeline

Heat to Recovery

Condenser

Regenerant Gas To Discharge

Drain

To Pipeline

40 °F at Pressure Dew Point

Courtesy of AFT
Typical Cleaning System Installation

H₂S removal tanks

Gas conditioning skid

Siloxane removal tanks